Discovery and Characterization of the Potent, Allosteric SHP2 inhibitor GDC-1971 for the Treatment of RTK/RAS Driven Tumors

**Bret Williams, Alexander Taylor, Olivia Orozco, Christopher Owen, Elizabeth Kelley, Andre Lescarbeau, Kelley Shortleeves, Randy Kipp, Vy Nguyen, Erin Brophy, Jeremy Wilbur, Yong Tang, David Lanzetta, Nigel Waters, Sherri Smith, Fabrizio Giordanetto, Paul Maragakis, Jack Greismar, Lindsay Willmore, Eric Therrien, Yang Xiao, Marie Evangelista, Luca Gerosa, Eva Lin, Mark Merchant, Alfonso Arrazate, Emily Chao, Pablo Sanz-Lopez, Laura Champion, Stefan Chun, Thomas Hunsaker, Gauri Deshmukh, Christine M. Bowman, David E. Shaw,*†, Mark Murcko¹, Mahesh Padval¹, W. Patrick Walters¹, James Watters¹, Donald A. Bergstrom¹

Introduction

The non-receptor tyrosine phosphatase SHP2 (PTPN11) plays an important role in the regulation of RTK/RAS signaling transduction downstream of growth factor receptor activation. GDC-1971 (formerly RLY-1971), is a highly potent, selective, and orally bioavailable small-molecule SHP2 inhibitor that stabilizes SHP2 in a closed, auto-inhibited conformation. GDC-1971 inhibits both wild-type SHP2 (IC50 = 1.7 nM) and the ERK activating mutant (IC50 = 230 nM) in biochemical assays. In standard 2-dimensional and anchorage-independent growth conditions, GDC-1971 inhibits cellular proliferation in models harboring receptor tyrosine kinase (RTK), SHP2, or KRAS mutations in a dose-dependent manner. GDC-1971 potently inhibits the proliferation of cell lines harboring KRAS G12C or G12V mutations (median IC50 = 85 nM) compared to models harboring other KRAS G12, G13 Q61 mutations (median IC50 = 1.4 μM), indicating a link between KRAS GTP hydrolysis and SHP2 dependency. In vivo, GDC-1971 demonstrates dose-dependent RAS/MAPK pathway inhibition and induces significant tumor-growth inhibition in human xenograft models harboring ERK and KRAS alterations at continuous daily doses that are well tolerated. GDC-1971 also displays significant synergy in combination with other targeted therapies in cell line models. GDC-1971 in combination with the KRAS G12C inhibitor GDC-6036 resulted in significant tumor regression in a KRAS G12C mutant NSCLC xenograft model at doses where single agent treatment showed only modest tumor growth inhibition. In rodent and dog toxicology studies, GDC-1971 is well tolerated at exposures above those required to induce regression in xenograft models. Continuous daily dosing of GDC-1971 is being studied in combination with GDC-6036 in the clinic (NCT04448874).

GDC-1971 Pharmacokinetic Properties

<table>
<thead>
<tr>
<th>PK</th>
<th>Mouse</th>
<th>Rat</th>
<th>Dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL (ml/kg/min)</td>
<td>18 (1.01)</td>
<td>18 (1.07)</td>
<td>7 (0.59)</td>
</tr>
<tr>
<td>Vd (l/kg)</td>
<td>1.8</td>
<td>3.9</td>
<td>6.8</td>
</tr>
<tr>
<td>t1/2</td>
<td>3.2 hours</td>
<td>1.1 hours</td>
<td>1.1 hours</td>
</tr>
<tr>
<td>F (%) (oral)</td>
<td>20</td>
<td>37</td>
<td>80</td>
</tr>
<tr>
<td>PNL (%) (unbound)</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>14 (ng/ml • h) + 1</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Mean residence time (h)</td>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>% renal clearance</td>
<td>1.6</td>
<td>0.75</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Results

1. GDC-1971 is a potent SHP2 inhibitor

A. **In vitro inhibition of WT and G12C SHP2**

B. **GDC-1971 inhibits MAPK signaling in cells**

2. GDC-1971 inhibits the proliferation of tumor cell lines in vitro

A. Treatment with GDC-1971 inhibits growth of an EGF-amplified model

B. GDC-1971 is active in KRAS G12A/C and a subset of KRAS WT cell line models

3. GDC-1971 inhibits the growth of RTK and KRAS mutant tumor models in vivo

A. **KYE5320** EGF-amplified Esophageal

B. **NGI-5358** KRAS G12C NSCLC

C. **In vivo PK/PD Relationship**

D. **In vivo PK/PD Relationship**

4. GDC-1971 combines with ALK targeted therapies and can reverse resistance in vivo

A. **Alexinostatin-resistant ALK-driven cell line model**

B. **GDC-1971 Potency is Similar in Alexinostatin-Resistant Model**

C. **Synergy between GDC-1971 and Alexinostatin**

5. GDC-1971 shows potent synergy in combination with the KRAS G12C inhibitor GDC-6036 in vitro and in vivo

A. **GDC-1971 and GDC-6036 are Synergistic in KRAS G12C Mutant Models**

B. **Combination Assay Plot of GDC-1971 and GDC-6036 in NCI-H2122**

C. **MAPK-pathway signaling is suppressed in GDC-1971/GDC-6036 Treated NCI-H2122 Cells**

D. Sustained Pathway Inhibition is Observed with in vivo Treatment of GDC-1971 and GDC-6036

E. **The Combination of GDC-1971 and GDC-6036 Results in Tumor Regressions in vivo in NCI-H2122 Xenografts**

Conclusions

- GDC-1971 is a potent, allosteric SHP2 inhibitor
- GDC-1971 demonstrates inhibition of the MAPK pathway in cells, resulting in an anti-proliferative effect
- GDC-1971 achieves significant anti-tumor growth effect as a single-agent in tumor xenograft models and continuous daily dosing is well tolerated
- The combination of GDC-1971 with Alexinostatin in cells that have acquired resistance to the ALK inhibitor Crizotinib and Alexinostatin results in a synergistic anti-proliferative response
- The combination of GDC-1971 with the KRAS G12C inhibitor GDC-6036 results in synergistic effects on cell line viability in KRAS G12C mutant cell line models and drives potent tumor regressions in vivo in the KRAS G12C model NCI-H2122
- The combination trial of GDC-1971 and GDC-6036 is ongoing to assess clinical benefit in KRAS G12C mutant tumors

References

This presentation is the intellectual property of the author/presenter. Contact bwilliams@relayrx.com for permission to reprint and/or distribute.