First-in-human global multi-center study of RLY-2608, a pan mutant and isoform selective PI3Kα inhibitor, as a single agent in advanced solid tumor patients and in combination with fulvestrant in patients with advanced breast cancer

Cesar A. Perez1, Jason Henry2, Andreas Varkaris3, Vivek Subbiah4, Alexander I. Spira5, Oleg Schmidt-Kittler6, Jinshan Shen7, Wei Guo8, Tamieka Hunter9, Kai Yu Jen9, Mahesh Padval9, Djuro Karanovic9, Beni B. Wolff9, Erika P. Hamilton7

1Saraff Cannon Research Institute (Florida Cancer Institute), Orlando, Florida, USA; 2Sarah Cannon Research Institute (Health One), Denver, Colorado, USA; 3Massachusetts General Hospital, Boston, Massachusetts, USA; 4MD Anderson Cancer Center, Houston, Texas, USA; 5Virginia Cancer Specialist, Fairfax, Virginia, USA; 6Relay Therapeutics, Cambridge, Massachusetts, USA; 7Saraff Cannon Research Institute (Tennessee Oncology), Nashville, Tennessee, USA.

Background

- Targeting constitutively active mutant kinases with selective small molecule inhibitors is a key therapeutic pillar of precision oncology.
- Phosphatidylinositol-4,5-bisphosphate-3 kinase, catalytic subunit alpha (PIK3CA) mutations leading to oncogenic activation of PI3Kα represent the largest opportunity for this approach in solid tumors1-2
 - However, no known selective inhibitor targets mutant PI3Kα in the clinic.
 - Toxicities related to inhibition of WT PI3Kα (hyperglycemia) and other PI3K isoforms limit the tolerability, dosing, and efficacy of the orthosteric inhibitor, alpelisib, the only approved solid tumor PI3K inhibitor3.
- To further investigate this target, we used our Dynamo4 platform that integrates computational and experimental techniques to gain insight into the dynamic configurations of WT and mutant PI3Kα.
- We designed RLY-2608, an oral, selective allosteric pan-mutant PI3Kα inhibitor, to bind to a novel allosteric site and overcome limitations of current inhibitors via mutant- and isoform-selective PI3Kα inhibition for greater target coverage, improved tolerability, and antitumor activity.

RLY-2608 is the first known allosteric PI3Kα mutant and isoform selective inhibitor

Figure 1. (a) RLY-2608 novel allosteric mechanism (b) and novel MOA enables selectivity for PI3Kα-mutants

(a) Alpelisib binds orthosteric (catalytic) site. RLY-2608 binds proprietary allosteric site (not disclosed).

STUDY DESIGN

This is a global, multi-center, dose escalation/expansion study of RLY-2608 as a single agent in adults who have advanced solid tumors that are refractory, intolerant, or declined standard therapy and RLY-2608 in combination with fulvestrant in previously treated patients with HR+/HER2- metastatic breast cancer.

Figure 2. (a, b) In-vivo tumor regression observed in H1047R and E545K mutant models with (c) less insulin at active doses of RLY-2608 than orthosteric inhibitors

Figure 3. Study Design (NCT0216432)

Part 1: Dose Escalation

- PK3CAmut Clear Cell OvCa (N = 15)
- PK3CAmut HHNSC (N = 15)
- PK3CAmut Cervical CA (N = 15)
- PIK3CA double mutant advanced solid tumors (N=15)

Part 2: Dose Expansion

- PK3CAmut, HR+, HER2- advanced breast cancer, with NO prior PI3K inhibitor (N = 15)
- PK3CAmut, HR+, HER2- advanced breast cancer, intolerant to PI3K inhibitor (N = 15)

Figure 4. Active sites

Key Objectives

- Superior operating characteristics relative to traditional 3+3 design and continual reassessment designs
- Bayesian toxicity assessment coupled with option to accelerate dose titration and enrich accrual to dose level determined to be tolerable and pharmacologically active
- Permits rigorous assessment of safety, pharmacokinetics, and anti-tumor activity to define optimal dose and schedule
- More accurately determines maximum tolerated dose via isotonic regression of observed dose-limiting toxicities rate across all cohorts

BAYESIAN OPTIMAL INTERVAL DOSE ESCALATION

- The target enrollment for RLY-2608 is 190 patients. Recruitment is ongoing in 6 study centers in the USA.
- USA enrollment began December 2021 and study start-up ex-USA is under way.

ELIGIBILITY CRITERIA

- ≥ 18 years of age
- Documented primary oncogenic PIK3CA mutation per local assessment (tumor or blood)
- ECOG performance status 0 – 1
- Part 1: Evaluable disease per RECIST v1.1
- Part 2: Measurable disease per RECIST v1.1
- No prior PI3K inhibitor (except Part 2 RLY-2608 + Fulvestrant combination group intolerant to a inhibitors)
- For RLY-2608+Fulvestrant combination, patients must have previous treatment with ≤ 1 chemotherapy, ≥1 CDK4/6 inhibitor and ≥1 anti-estrogen therapy

References

4. Pazdil, et al. Poster presented at SABCS; 2021; San Antonio, TX, USA.

Acknowledgments

The authors would like to thank the patients, their families, and all study team members involved in this study.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® and the author of this poster.

Presented at the 2022 American Society of Clinical Oncology Annual Meeting, 3-7 June 2022, Chicago, USA. For more information, please contact: ClinicalTrials@relaytx.com.