Efficacy of RLY-4008, a highly selective FGFR2 inhibitor in patients with an FGFR2 fusion or rearrangement, FGFR inhibitor-naïve cholangiocarcinoma: ReFocus trial

Antoine Hollebecque, Mitesh J. Borad, Lipika Goyal, Alison M. Schram, Joon Oh Park, Philippe Cassier, Suneel Kamath, David Tait, Efrat Dotan, Richard Kim, Vaibhav Sahai, Do-Youn Oh, Chih-Yi Andy Liao, Michael Millward, Desamparados Roda Perez, Charles Ferté, Rick Blakesley, Beni B. Wolf, Vivek Subbiah, Robin Kate Kelley

1 Institut Gustave Roussy, Paris, France; 2 Mayo Cancer Center, Scottsdale, USA; 3 Massachusetts General Hospital, Boston, USA; 4 Memorial Sloan Kettering Cancer Center, New York, USA; 5 Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; 6 Centre Léon Berard, Lyon, France; 7 The Cleveland Clinic Taussig Cancer Institute, Cleveland, USA; 8 National Cancer Centre Singapore, Singapore; 9 Fox Chase Cancer Center, Philadelphia, USA; 10 H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA; 11 The University of Michigan, Ann Arbor, USA; 12 Seoul National University Hospital, Seoul, Republic of Korea; 13 The University of Chicago, Chicago, USA; 14 Linear Clinical Research & University of Western Australia, Nedlands, Australia; 15 Hospital Clínico Universitario de Valencia, Spain; 16 Relay Therapeutics, Cambridge, USA; 17 The University of Texas MD Anderson Cancer Center, Houston, USA; 18 UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA

Paris, France, 11 September 2022
Dr. Antoine Hollebecque declares participation on safety monitoring or consulting and advisory boards for Amgen, Basilea, BMS, Incyte, Servier, QED Therapeutics, Relay Therapeutics, and Taiho.
Cholangiocarcinoma and Oncogenic FGFR2 Fusions

Cholangiocarcinoma (CCA) is a rare malignancy with a dismal prognosis1

FGFR2 fusions/rearrangements drive ~10-15% of intrahepatic cholangiocarcinoma2

RLY-4008: The First Highly Selective FGFR2 Inhibitor

In contrast to pan-FGFRi, RLY-4008 is a potent and selective FGFR2 inhibitor.

RLY-4008 selectively inhibits FGFR2 based on unique conformational dynamics.

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Mechanism of Action</th>
<th>Biochemical IC50 (nM)</th>
<th>FGFR1</th>
<th>FGFR2</th>
<th>FGFR3</th>
<th>FGFR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLY-4008</td>
<td>Irreversible FGFR2 selective</td>
<td>864.3</td>
<td>3.1</td>
<td>274.1</td>
<td>17,633</td>
<td></td>
</tr>
<tr>
<td>Infgratinib</td>
<td>Reversible Pan-FGFRi</td>
<td>1.1</td>
<td>1</td>
<td>2</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Pemigatinib</td>
<td>Reversible Pan-FGFRi</td>
<td>0.39</td>
<td>0.46</td>
<td>1.2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Futibatinib</td>
<td>Irreversible Pan-FGFRi</td>
<td>1.8</td>
<td>1.4</td>
<td>1.6</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

Potent in-vivo activity against FGFRi-sensitive and resistant cholangiocarcinoma

ReFocus: A Global, Seamless Phase 1/2 Open Label Study

Phase 1: Maximum tolerated dose and Recommended Phase 2 Dose (RP2D), safety, PK and preliminary efficacy

- Phase 1 Dose Escalation (completed)
- Patients with unresectable or metastatic CCA and other solid tumors harboring an FGFR2 alteration by local testing
- RLY-4008 70 mg QD (RP2D)

Phase 2: Objective response rate (ORR) and duration of response (DoR) by independent review committee

- Phase 2 Expansion (initiated Dec 2021)
- Cholangiocarcinoma
 - FGFR2 fusion+ previously treated with chemotherapy, FGFRi-naïve (n=100) Pivotal Cohort
 - FGFR2 fusion+ previously treated with FGFRi (n=50)
 - FGFR2 fusion+ treatment-naïve (n=20)
 - FGFR2 mutant or amplified (n=20)

- Other advanced solid tumors with FGFR2 alterations
 - 3 Cohorts FGFR2 fusion+, amplified and mutant (n=30 each)

Key objectives

- Phase 1: Maximum tolerated dose and Recommended Phase 2 Dose (RP2D), safety, PK and preliminary efficacy
- Phase 2: Objective response rate (ORR) and duration of response (DoR) by independent review committee

Preliminary data, data cut August 1, 2022 (response investigator assessed)
Patient Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CCA, Fusion+, FGFRi-naïve*</th>
<th>Overall** (N=195)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RP2D, 70 mg QD (N=17)</td>
<td>All doses (N=38)</td>
</tr>
<tr>
<td>Age (years), median (range)</td>
<td>57 (36 to 81)</td>
<td>58 (33 to 81)</td>
</tr>
<tr>
<td>Female, %</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Race, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White / Asian / Black / Unknown</td>
<td>41 / 24 / 0 / 35</td>
<td>58 / 21 / 3 / 18</td>
</tr>
<tr>
<td>ECOG PS, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prior lines of systemic therapy, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>32</td>
</tr>
<tr>
<td>3+</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Baseline sum of target lesions (RECIST 1.1, mm), median (range)</td>
<td>57 (10 to 157)</td>
<td>63 (10 to 216)</td>
</tr>
</tbody>
</table>

* Efficacy analysis includes patients who are FGFRi naïve CCA from Phase 1 and Phase 2. Patients with measurable disease who had opportunity for ≥2 tumor assessments to confirm response or discontinued treatment with <2 tumor assessments.

** Safety population includes patients who received ≥1 dose of RLY-4008 at any dose level.
RLY-4008 Provides Potent and Selective FGFR2 Inhibition

Steady state pharmacokinetics at RP2D

- **FGFR2 fusion-target**
- **Continuous coverage of FGFR2 target**
- **Time (h)**
- **T\text{\tiny max}: 4 hours**
- **Effective half-life: 23 hours**

Serum phosphate over time at RP2D and all QD doses

- **Phosphate levels WNL**
- **Normal phosphate indicates clinically insignificant FGFR1 inhibition**

Phosphate (mmol/L) (Mean ± SE)

- **RP2D, 70 mg QD (N=89)**
- **All QD doses (N=136)**

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.
Radiographic Tumor Regression and Response per RECIST 1.1 Across All Doses

Patients with **FGFR2** fusions or rearrangements, FGFRi-naïve (n=38)

ORR 63.2%

92% of patients with tumor reduction

Majority of patients with partial response per RECIST 1.1

Treatment
- RP2D, 70 mg QD (N=17)
- All other doses (N=21)
- Ongoing (N=26)

QDi = once daily dosing on an intermittent schedule; BID = twice daily dosing; ★ = resection with curative intent

Confirmed ORR 57.9% 2/24 unconfirmed PR
Patients with FGFR2 fusions or rearrangements, FGFRi-naïve (n=17)

ORR 88.2%

All patients had radiographic tumor reduction and nearly all had PR per RECIST 1.1

Confirmed ORR 82.4% 1/15 unconfirmed PR

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.
RLY-4008 Induces Marked Radiographic Response per RECIST 1.1

56-year-old female with FGFR2-PLETHA4 rearrangement ICC
Refractory to Gemcitabine/Cisplatin
RLY-4008 70 mg QD
Ongoing confirmed partial response per RECIST 1.1 (-68%)

Hepatic dome lesions not detected
Deep liver tumor regression
Tumor regression with bone ossification

Courtesy A. Hollebecque, IGR.
Radiographic Response per RECIST 1.1

Patients with *FGFR2* fusions or rearrangements, FGFRi-naïve

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RP2D, 70 mg QD (N=17)</th>
<th>All doses (N=38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective response rate (ORR), n (% [95% CI])</td>
<td>15 (88.2 [63.6 - 98.5])</td>
<td>24 (63.2 [46.0 - 78.2])</td>
</tr>
<tr>
<td>• Confirmed ORR, n (% [95% CI])</td>
<td>14 (82.4 [56.6 - 96.2])</td>
<td>22 (57.9 [40.8 - 73.7])</td>
</tr>
<tr>
<td>Best overall response, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Partial response</td>
<td>82.4</td>
<td>57.9</td>
</tr>
<tr>
<td>• Unconfirmed partial response</td>
<td>5.9</td>
<td>5.3</td>
</tr>
<tr>
<td>• Stable disease</td>
<td>11.8</td>
<td>31.6</td>
</tr>
<tr>
<td>• Progressive disease</td>
<td>—</td>
<td>5.3</td>
</tr>
<tr>
<td>• Response ongoing, n/N (%)*</td>
<td>15/15 (100.0)</td>
<td>19/24 (79.2)</td>
</tr>
<tr>
<td>Disease control rate, n (% [95% CI])</td>
<td>17 (100.0 [80.5 - 100.0])</td>
<td>36 (94.7 [82.3 - 99.4])</td>
</tr>
<tr>
<td>Remain on treatment, n (%)</td>
<td>15 (88.2)</td>
<td>26 (68.4)</td>
</tr>
</tbody>
</table>

* Includes 2 patients who came off treatment while still in response without disease progression.*
Duration of Exposure and Responses Across All Doses

Patients with FGFR2 fusions or rearrangements, FGFRi-naïve

Duration of exposure (weeks)

12/38 (32%) Discontinued - 1 resection (✓) with curative intent, 8 PD, 1 AE, 2 withdrawal of consent.

Majority of responders remain on treatment with ongoing response (71%, 17 of 24)
Median time to response 1.8 months
Median duration of exposure = 5.5 months (<0.1 to 18.5)

QDi = once daily dosing on an intermittent schedule; BID = twice daily dosing

12/38 (32%) Discontinued - 1 resection (✓) with curative intent, 8 PD, 1 AE, 2 withdrawal of consent.
Treatment-Related Adverse Events (TRAEs) ≥ 15%

AEs are low-grade, manageable, and largely reversible; Indicative of selective FGFR2 inhibition and sparing FGFR1 & FGFR4

<table>
<thead>
<tr>
<th>TRAE Dose Modification</th>
<th>RP2D, 70mg QD (N=89)</th>
<th>All Doses (N=195)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruption, n (%)</td>
<td>37 (42)</td>
<td>92 (47)</td>
</tr>
<tr>
<td>Reduction, n (%)</td>
<td>24 (27)</td>
<td>65 (33)</td>
</tr>
<tr>
<td>Discontinuation, n (%)</td>
<td>1 (1)</td>
<td>2* (1)</td>
</tr>
</tbody>
</table>

*1 hypersensitivity, 1 retinal pigment epithelial detachment, both resolved
PPE: palmar plantar erythrodysesthesia syndrome; relatedness determined by investigator
Conclusions

RLY-4008 is the first highly selective, irreversible inhibitor designed to target oncogenic FGFR2 driver alterations and resistance mutations

ReFocus validates this novel MOA and supports expedited development for the treatment of patients with FGFRi-naïve CCA harboring an FGFR2 fusion or rearrangement

High response rates and encouraging durability confirm highly potent FGFR2 targeting

- At the RP2D 70 mg QD, ORR is 88% (15/17, 15 with response ongoing)
- Across doses, ORR is 63% (24/38, 19 with response ongoing)

PK/PD and differentiated safety profile confirm highly selective FGFR2 inhibition

- Robust target inhibition
- Most AEs are low grade, largely reversible on-target AEs
- No clinically significant off-isoform toxicity

Results suggest that RLY-4008 has potential to transform CCA treatment paradigm and strongly support seamless expansion of ReFocus with registrational intent
Acknowledgements

We would like to thank the patients and their families, all study investigators, sub-investigators, and research staff at the following institutions:

Australia
- Jia Liu - St. Vincent's Hospital Sydney, New South Wales
- Jermaine Coward - Icon Cancer Care South Brisbane, Queensland
- Michael Millward - Linear Clinical Research Ltd, Western Australia

France
- François Ghiringhelli - Centre Georges François Leclerc, Côte-d'Or
- Antoine Italiano - EDOG - Institut Bergonie - PPDS, Gironde
- Philippe Cassier - Centre Léon Bérard, Rhône
- Antoine Hollebecque - Institut Gustave Roussy, Val-de-Marne

Hong Kong
- Thomas Yau - Queen Mary Hospital

Italy
- Giovanni Luca Frassineti - Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST S.r.l - PPDS, Emilia-Romagna
- Federico Cappuzzo - Istituto Nazionale Tumori Regina Elena, Lazio
- Giuseppe Curigliano - Istituto Europeo Di Oncologia, Lombardia

Republic of Korea
- Joon Oh Park - Samsung Medical Center - PPDS, Seoul Teugbyeolsi
- Changhoon Yoo - Asan Medical Center - PPDS, Seoul Teugbyeolsi
- Do-Youn Oh - Seoul National University Hospital, Seoul Teugbyeolsi

Netherlands
- Frans Opdam - Het Nederlands Kanker Instituut Antoni Van Leeuwenhoek Ziekenhuis, Noord-Holland

Singapore
- David Tai - National Cancer Centre

Spain
- Elena Garralda - Hospital Universitario Vall d'Hebron - PPDS, Barcelona
- Victor Moreno - START MADRID_Hospital Universitario Fundacion Jimenez Diaz, Madrid
- Irene Moreno - START MADRID_Hospital Universitario HM Sanchinarro - CIOCC, Madrid

Spain, cont’d
- Mariano Ponz-Sarvisé - Clinica Universidad Navarra, Navarra
- Desamparados Roda Perez - Hospital Clinico Universitario de Valencia, Valencia

Sweden
- Jeffrey Yachnin - Karolinska Universitetssjukhuset Solna

Taiwan
- Li-Yuan Bai - China Medical University Hospital, - Taiwan

United Kingdom
- Matthew Krebs - The Christie NHS Foundation Trust - PPDS, Lancashire
- Elisa Fontana - Sarah Cannon Research Institute UK - SCRI - PPDS, City of London

United States
- Mitesh Borad - Mayo Clinic Scottsdale - PPDS, Arizona
- Robin Kate Kelley - UCSF Helen Diller Family Comprehensive Cancer Center, California
- Anthony El-Khoueiry - USC Norris Cancer Center, California
- Hani Babiker - Mayo Clinic Jacksonville - PPDS, Florida
- Richard Kim - H. Lee Moffitt Cancer Center and Research Institute, Florida
- Chih-Yi (Andy) Liao - University of Chicago Medical Center, Illinois
- Lipika Goyal - Massachusetts General Hospital, Massachusetts
- Vaibhav Sahai - University of Michigan, Michigan
- Zhaohui Jin - Mayo Comprehensive Cancer Center - PPDS, Minnesota
- Alison Schram - Memorial Sloan Kettering Cancer Center, New York
- Suneel Kamath - The Cleveland Clinic Foundation, Ohio
- Efrat Dotan - Fox Chase Cancer Center, Pennsylvania
- Vivek Subbiah - University of Texas MD Anderson Cancer Center, Texas
- Andrew Paulson - Texas Oncology-Baylor Charles A. Sammons Cancer Center - USOR, Texas
- Vaia Florou - University of Utah - Huntsman Cancer Institute - PPDS, Utah
- Bruce Lin - Virginia Mason Medical Center, Washington

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.
Copies of this presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ESMO and the author of this poster.

European Society for Medical Oncology (ESMO)
Via Ginevra 4, CH-6900 Lugano
T. +41 (0)91 973 19 00
esmo@esmo.org

esmo.org