Tumor-agnostic efficacy and safety of lirafugratinib, a highly selective FGFR2 inhibitor, in patients with advanced solid tumors with FGFR2 fusions or rearrangements: the ReFocus study

Antoine Hollebecque¹; Efrat Dotan²*; Chih-Yi (Andy) Liao³; Desamparados Roda⁴; Elisa Fontana⁵; Hani Babiker⁶; Richard D. Kim⁷; Do-Youn Oh⁸; François Ghiringelli⁹; Irene Moreno¹⁰; Jia Liu¹¹; Vivek Subbiah¹²*; Andreas Varkaris¹³; Mitesh J. Borad¹⁴; Philippe Alexandre Cassier¹⁵; Alicia Deary¹⁶; Florence (Tianhui) Ramirez¹⁶; Fabien Ricard¹⁶*; Kai Yu Jen¹⁶; Alison M. Schram¹⁷

¹Institut Gustave Roussy, Paris, France; ²Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; ³The University of Chicago, Chicago, Illinois, USA; ⁴Hospital Clínico Universitario de Valencia, Valencia, Spain; ⁵Sarah Cannon Research Institute, London, UK; ⁶Mayo Cancer Center, Jacksonville, Florida, USA; ⁷H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; ⁸Seoul National University Hospital, Seoul, Republic of Korea; ⁹Centre Georges François Leclerc, Dijon, France; ¹⁰START Madrid − CIOCC, Madrid, Spain; ¹¹The Kinghorn Cancer Center, St Vincent's Hospital, Sydney, Australia; ¹²The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ¹³Massachusetts General Hospital, Boston, Massachusetts, USA; ¹⁴Mayo Cancer Center, Scottsdale, Arizona, USA; ¹⁵Centre Léon Bérard, Lyon, France; ¹⁶Relay Therapeutics, Inc. Cambridge, Massachusetts, USA; ¹⁷Memorial Sloan Kettering Cancer Center, New York, New York, USA

*Research conducted while at this institution

Presented at the 36th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics October 23–25, 2024, Barcelona, Spain

KEY RESULTS

- Lirafugratinib demonstrated durable clinical activity and radiographic response across 14 solid tumor types harboring an *FGFR2* fusion or rearrangement (f/r; n=46; cORR: 37% [95% CI, 23.2–52.5]; mDoR: 7.3 months [95% CI, 3.7–12.9])
- FGFR2 fusion or rearrangement (f/r; n=46; cORR: 37% [95% CI, 23.2–52.5]; mDoR: 7.3 months [95% CI, 3.7–12.9])
 The encouraging response rates and durability across refractory solid tumors are consistent with the robust efficacy
- previously demonstrated in patients with intrahepatic cholangiocarcinoma (CCA) with FGFR2 f/r (cORR: 58–82%)^{1,2}
 The differentiated safety profile (minimal off-isoform toxicity) was similar to what has been reported previously for lirafugratinib¹⁻³
- These data validate FGFR2 f/r as a tumor-agnostic target sensitive to selective FGFR2 inhibition
- Pivotal development in solid tumors continues in the ongoing ReFocus study⁴

INTRODUCTION

- FGFR2 f/r are oncogenic drivers in various solid tumors, and they are frequently found in intrahepatic CCA with an incidence of 10–20%^{3,5–7}
- Lirafugratinib (RLY-4008), the first highly selective FGFR2i, is being evaluated in patients with advanced solid tumors with *FGFR2* alterations, including f/r, in the ongoing Phase 1/2 ReFocus trial (NCT04526106)^{1–3,8}
- ReFocus previously showed promising preliminary efficacy in:
- Pan FGFRi-naïve patients with CCA with FGFR2 f/r (cORR at RP2D: 82.4% [95% CI, 56.6–96.2]; ORR across all doses: 57.9% [95% CI, 40.8–73.7])⁸
- Patients with solid tumors other than CCA with FGFR2 f/r (ORR: 35% [95% CI, 17–56]), amplifications (ORR: 24% [95% CI, 11–41]), or activating mutations (ORR: 13% [95% CI, 3–32])¹
- Previous data have also shown selective FGFR2i and minimal off-isoform toxicity of lirafugratinib^{2,3,8}
- Here, we report efficacy in patients with *FGFR2* f/r solid tumors other than CCA treated at the RP2D (70 mg QD) of lirafugratinib (data cutoff: June 26, 2024)

METHODS

• Eligible patients had advanced solid tumors with measurable disease per RECIST 1.1, FGFR2 alteration per local assessment of tumor and/or blood, ECOG PS 0–2, and were refractory or intolerant to standard therapy

RP2D:

- The efficacy analysis focused on 46 FGFRi-naive patients with non-CCA solid tumors with FGFR2 f/r who had
 ≥1 postbaseline tumor assessment or discontinued before having any postbaseline tumor assessment
- Tumor response was evaluated using RECIST 1.1 (investigator assessment)
- Safety was assessed in all patients in the trial (N=385) per NCI CTCAE v5.0
- All patients received lirafugratinib at RP2D (70 mg QD)

Figure 1. ReFocus: A Phase 1/2 open-label study (NCT04526106)

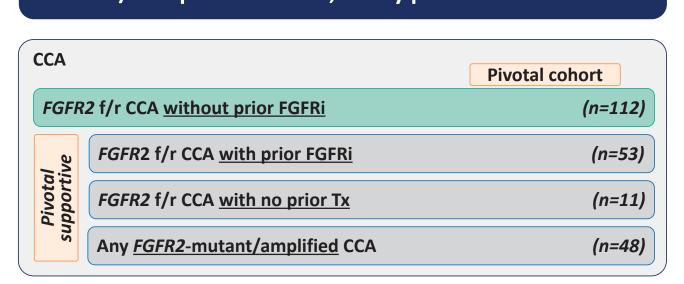
Part 1: Dose escalation – MTD/RP2D, safety, PK/PD, anti-tumor activity

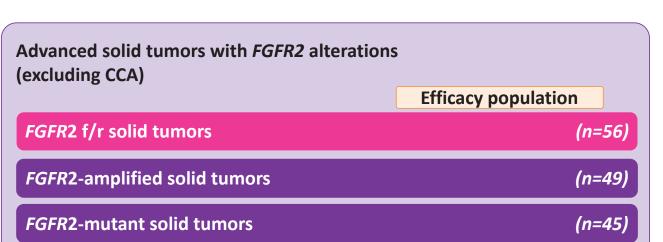
Advanced FGFR2-altered solid tumors

- Bayesian Optimal Interval (BOIN) design
- Enrollment per local diagnostic assessment

• Lirafugratinib administered orally QD, BID, or QDi

First patient treated 9/2020 ——— RP2D 12/2021


BOIN dose escalations (N=116)


15 dose levels (20–200 mg daily)

3 schedules (QD, BID, QDi)

MTDs not reached

Part 2: Dose expansion – ORR/DoR per RECIST 1.1, safety per NCI CTCAE v5.0

Table 1. Patient demographics and baseline characteristics

Parameter	Efficacy population (n=46)	Safety population (N=385)
Sex, n (%)		
Female	20 (43)	230 (60)
Age (years), median (range)	58 (33–82)	60 (20–84)
Race, n (%)		
White	20 (43)	215 (56)
Asian	7 (15)	64 (17)
Other/Unknown	19 (41)	106 (28)
ECOG PS, n (%)		
0	20 (43)	181 (47)
1	25 (54)	201 (52)
2	1 (2)	3 (1)
Number of prior lines of systemic therapy, median (range) Number of prior lines of systemic therapy, n (%)	2 (1–14)	2 (0–14)
0	0	7 (2)
1	12 (26)	129 (34)
2	17 (37)	109 (28)
≥3	17 (37)	140 (36)
Prior systemic therapy, n (%)		
Chemotherapy + ICI	16 (35)	122 (32)

Table 2. Efficacy by *FGFR2* f/r solid tumor type, excluding CCA (n=46)

Tumor type	Patients n	cORR		DoR
		%	95% CI	Range (months)
FGFR2 f/r solid tumor type (excl. CCA)	46	37.0	(23.2–52.5)	1.6+ -16.6+
Pancreatic	13	46.2	(19.2-74.9)	1.6+ -11.5
Gastric	7	14.3	(0.4-57.9)	3.7
NSCLC	4	75.0	(19.4-99.4)	7.4 + -16.6
Colorectal	4	25.0	(0.6–80.6)	7.3
Ovarian	3	66.7	(9.4–99.2)	2.1+ -5.1
CUP	3	66.7	(9.4–99.2)	3.0-7.2
Breast	3	33.3	(0.8–90.6)	5.5
Endometrial	2	PD, PD	-	-
Cervical	2	SD, PD	-	-
HBC	1	PR	-	5.5+
Esophageal	1	SD	-	-
Peritoneum	1	SD	-	-
Salivary	1	SD	-	-
Thyroid	1	SD	-	-

Figure 2. Lirafugratinib showed a consistent efficacy signal across a range of non-CCA solid tumors with FGFR2 f/r (n=44°)

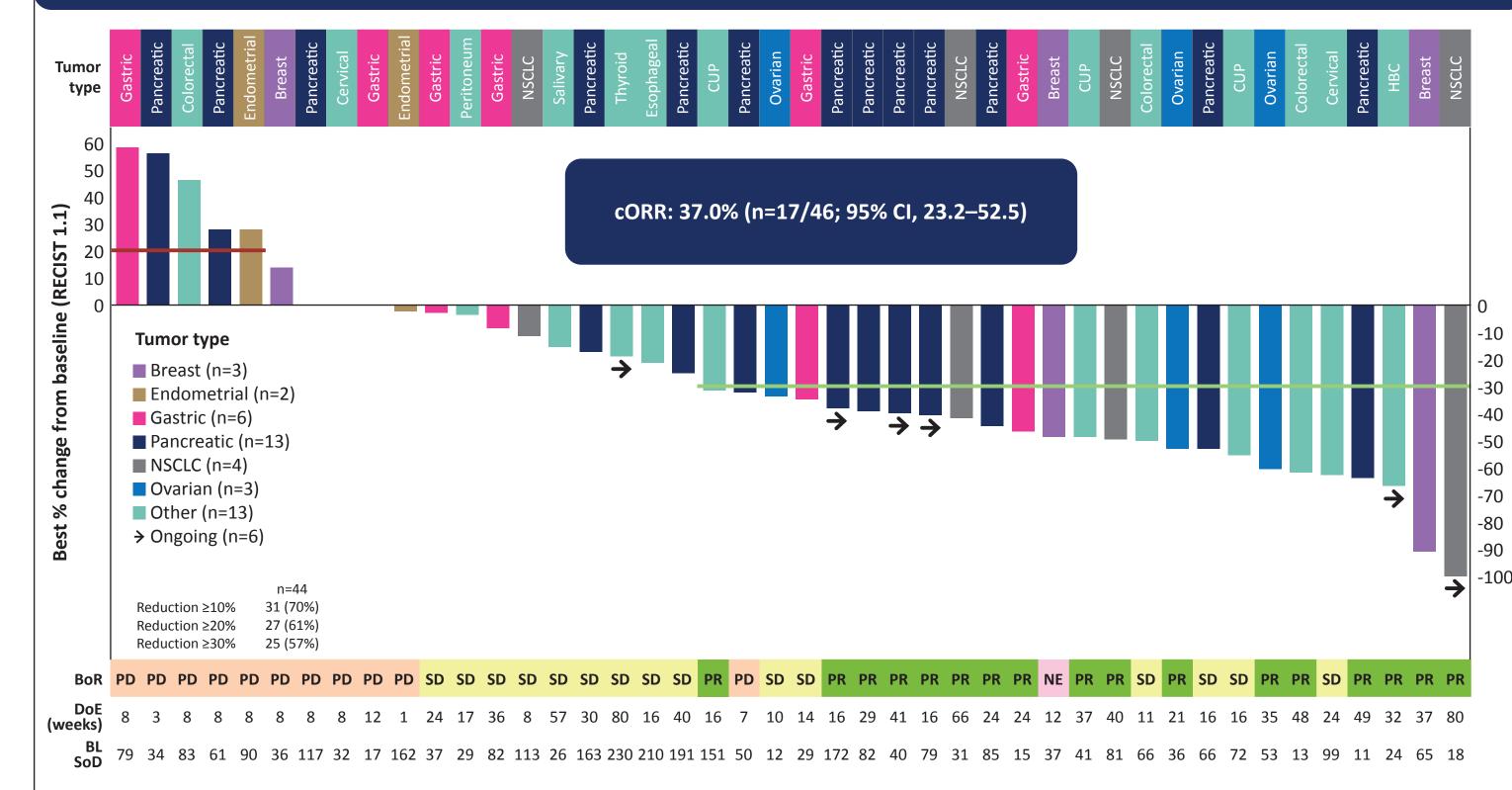
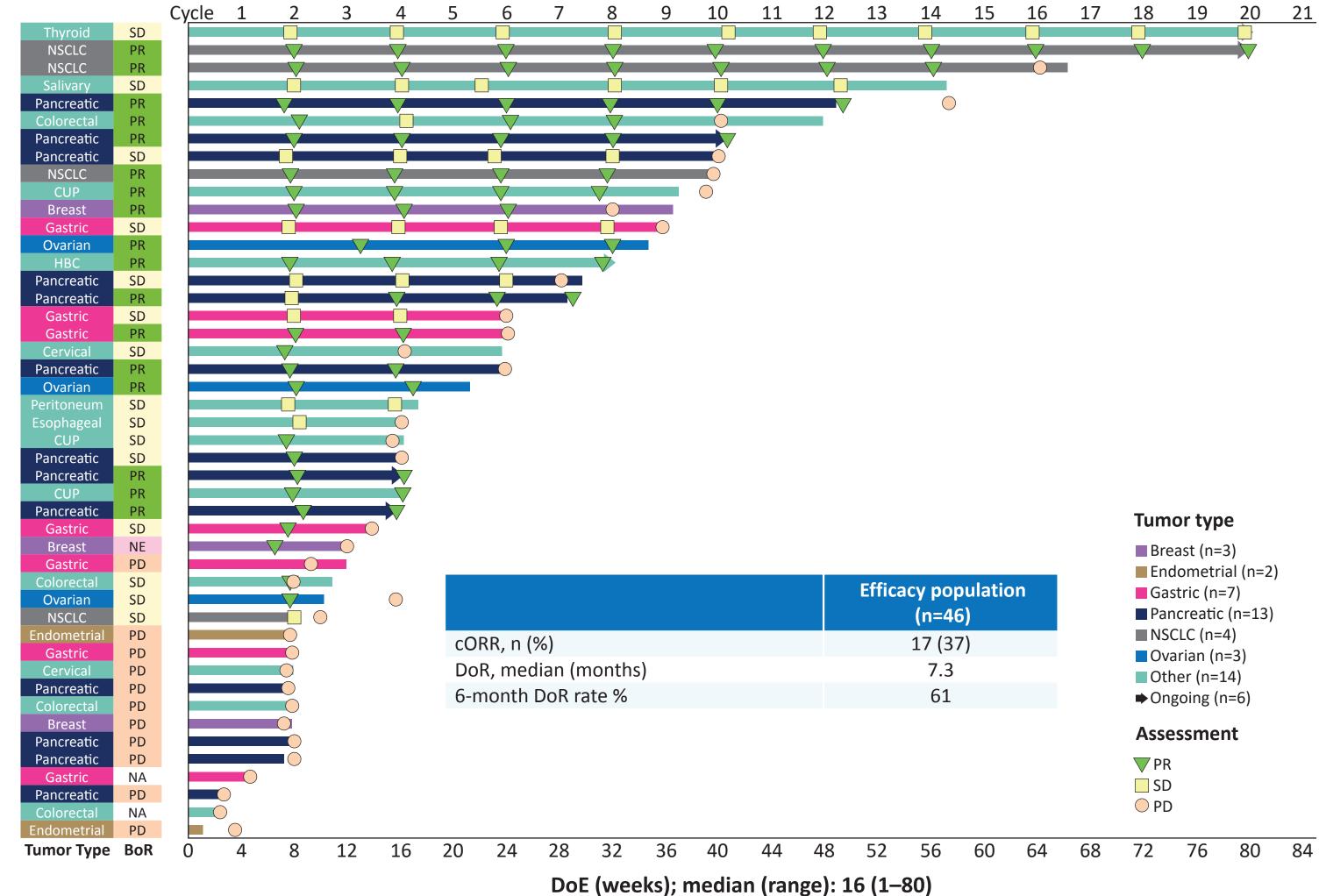
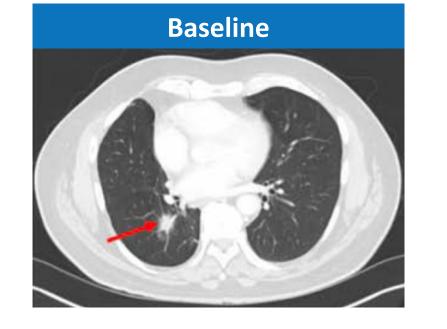
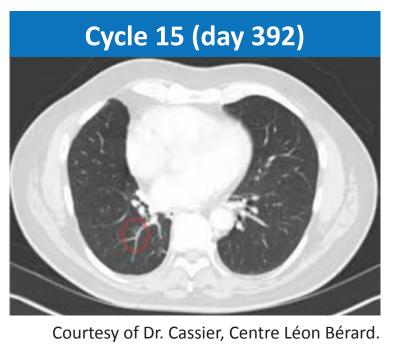



Figure 3. Responses were durable across non-CCA solid tumors with FGFR2 f/r (n=44a)


^aTwo patients (gastric and colorectal) discontinued without postbaseline scan.



^aTwo patients (gastric and colorectal) discontinued without postbaseline scan.

Figure 4. Robust efficacy in FGFR2 fusion mNSCLC

66-year-old male patient with mNSCLC (FGFR2-POC1B fusion) with prior surgery, PBC, and IO. On study, he had a PR at his first postbaseline assessment and further regression with continued treatment. His response is ongoing after >16 months (as of the data cutoff date; BoR=PR, including CR in the lung target lesion).

SAFETY

- TRAEs were consistent with the known safety profile of lirafugratinib
- Most TRAEs were low-grade, reversible, and manageable on-target events
- Clinically significant FGFR2 off-isoform toxicities, such as hyperphosphatemia and diarrhea, were uncommon
- Overall, 258 patients (67%) had treatment-related dose interruptions, 206 (54%) had treatment-related dose reductions, and 8 (2%) had treatment-related discontinuations

Table 3. TRAEs were consistent with the known safety profile of lirafugratinib in all patients with non-CCA *FGFR2*-altered solid tumors (N=385)

	Parameter	Lirafugratinib 70 mg QD (N=385)	
	Grade	Any, %	Grade ≥3, %
	Any	98	42
	Nail toxicities	71	8
	Stomatitis	66	12
	PPE	65	19
	Dry mouth	44	0
Lirafugratinib	Alopecia	38	0
TRAEs (≥15%)	RPED	28	2
` '	Dry skin	25	0
	Dysgeusia	25	1
	Dry eye	24	0
	Fatigue	19	1
Rash Hyperphosphaten	Rash	19	3
	Hyperphosphatemia	18	0

References

+: Denotes censored time

Schram A, et al. *Mol Cancer Ther*. 2023;22(12 Suppl):IA006.
 Borad MJ, et al. *J Clin Oncol*. 2023;41(16 Suppl):4009.
 Goyal L, et al. *Mol Cancer Ther*. 2021;20(12 Suppl):P02–02.
 ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04526106. Accessed October 14, 2024.
 Helsten T, et al. *Clin Cancer Res*. 2016;22(1):259–267.
 Gu W, et al. *Am J Cancer Res*. 2021;11(8):3893–3906.
 Subbiah V, et al. *Cancer Discov*. 2023;13(9):2012–2031.
 Hollebecque A, et al. *Ann Oncol*. 2022;33(7 Suppl):S808–S869.

Abbreviations

BID, twice daily dosing; BL, baseline; BOIN, Bayesian Optimal Interval; BoR, best overall response; CCA, cholangiocarcinoma; CI, confidence interval; CR, complete response; CT, chemotherapy; CUP, carcinoma of unknown primary; DoE, duration of exposure; (m)DoR, median duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; f/r, fusion or rearrangement; FGFR(i/2), fibroblast growth factor receptor (inhibitor/2); HBC, hepatobiliary cancer; ICI, immune checkpoint inhibitor; IO, immunotherapy; MTD, maximum tolerated dose; NA, not applicable; NCI CTCAE v5.0, National Cancer Institute Common Terminology Criteria for Adverse Events v5.0; NE, not evaluable; (m)NSCLC, (metastatic) non-small cell lung cancer; (c)ORR, (confirmed) objective response rate; PBC, platinum-based chemotherapy; PD, progressive disease; PK/PD, pharmacodynamics; POC1B, POC1 centriolar protein B; PPE, palmar-plantar erythrodysesthesia syndrome; PR, partial response; QD, once daily; QDi, once daily; QDi,

Acknowledgments

The authors would like to thank the study participants and their families, and study investigators and research staff at the ReFocus study sites. This study was sponsored by Relay Therapeutics, Inc. Medical writing support was provided by Alexandra Niemczura of BOLDSCIENCE, Inc. and funded by Relay Therapeutics.

Copies of this presentation obtained through Quick Response Code are for personal use only and may not be reproduced without permission from the EORTC-NCI-AACR Symposium and the authors of this poster.

